首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7476篇
  免费   1175篇
  国内免费   978篇
化学   5448篇
晶体学   54篇
力学   466篇
综合类   76篇
数学   872篇
物理学   2713篇
  2024年   5篇
  2023年   134篇
  2022年   142篇
  2021年   236篇
  2020年   299篇
  2019年   284篇
  2018年   208篇
  2017年   199篇
  2016年   309篇
  2015年   347篇
  2014年   362篇
  2013年   504篇
  2012年   599篇
  2011年   710篇
  2010年   448篇
  2009年   448篇
  2008年   508篇
  2007年   453篇
  2006年   435篇
  2005年   417篇
  2004年   288篇
  2003年   259篇
  2002年   253篇
  2001年   219篇
  2000年   174篇
  1999年   159篇
  1998年   151篇
  1997年   131篇
  1996年   130篇
  1995年   148篇
  1994年   115篇
  1993年   106篇
  1992年   73篇
  1991年   97篇
  1990年   59篇
  1989年   60篇
  1988年   48篇
  1987年   31篇
  1986年   22篇
  1985年   17篇
  1984年   11篇
  1983年   10篇
  1982年   11篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1966年   1篇
  1957年   1篇
排序方式: 共有9629条查询结果,搜索用时 17 毫秒
941.
A water-soluble brilliant blue/reduced graphene oxide/tetradecyltriphenylphosphonium bromide composite (BB-rGO-TTP) was prepared by using noncovalent brilliant blue-functionalized reduced graphene oxide (BB-rGO) as the tetradecyltriphenylphosphonium bromide (TTP) carrier. Antibacterial performance of this novel composite was investigated for both Gram-positive and Gram-negative bacteria. The results showed that the novel BB-rGO-TTP, combing the advantages of graphene and TTP, displayed excellent synergistic antibacterial activity, specific targeting capability, water solubility, and mild cytotoxicity, suggesting the great potential application as sprayable graphene-based antibacterial solutions.  相似文献   
942.
Hydrophobic, methyl-terminated self-assembled monolayer (SAM) surfaces can be used to reduce friction. Among methyl-terminated SAMs, the frictional properties of alkanethiol SAMs and silane SAMs have been well-studied. In this research, we investigated friction of methyl-terminated n-hexatriacontane (C36) SAM and compared its friction properties with the alkanethiol and silane SAMs. Alkane SAM does not have an anchoring group. The alkane molecules stand on the surface by physical adsorption, which leads to a higher surface mobility of alkane molecules. We found that C36 SAM has a higher coefficient of friction than that of octadecyltrichlorosilane (OTS) silane. When an atomic force microscope (AFM) tip was swiped across the alkane SAM with a loading force, we found that the alkane SAM can withstand the tip loading pressure up to 0.48 GPa. Between 0.48 and 0.49Ga, the AFM tip partially penetrated the SAM. When the tip moved away, the deformed SAM healed and maintained the structural integrity. When the loading pressure was higher than 0.49 GPa, the alkane SAM was shaved into small pieces by the tip. In addition, we found that the molecular tilting of C36 molecules interacted with the tribological properties of the alkane SAM surface. On one hand, a higher loading force can push the rod-like alkane molecules to a higher tilting angle; on the other hand, a higher molecular tilting leads to a lower friction surface.  相似文献   
943.
Barnacle cement (BC) was beneficially applied on stainless steel (SS) to serve as the initiator anchor for surface-initiated polymerization. The amine and hydroxyl moieties of barnacle cement reacted with 2-bromoisobutyryl bromide to provide the alkyl halide initiator for the surface-initiated atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate (HEMA). The hydroxyl groups of HEMA polymer (PHEMA) were then converted to carboxyl groups for coupling of chitosan (CS) to impart the SS surface with both antifouling and antibacterial properties. The surface-functionalized SS reduced bovine serum albumin adsorption, bacterial adhesion, and exhibited antibacterial efficacy against Escherichia coli (E. coli). The effectiveness of barnacle cement as an initiator anchor was compared to that of dopamine, a marine mussel inspired biomimetic anchor previously used in surface-initiated polymerization. The results indicate that the barnacle cement is a stable and effective anchor for functional surface coatings and polymer brushes.  相似文献   
944.
We have developed a general method combining photochemical grafting and copper-catalyzed click chemistry for biofunctionalization of titanium substrates. The UV-activated grafting of an α,ω-alkenyne onto TiO(2)/Ti substrates provided a "clickable" thin film platform. The selective attachment of the vinyl end of the molecule to the surface was achieved by masking the alkynyl end with a trimethylgermanyl (TMG) protecting group. Subsequently, various oligo(ethylene glycol) (OEG) derivatives terminated with an azido group were attached to the TMG-alkynyl modified titanium surface via a one-pot deprotection/click reaction. The films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, ellipsometry, and atomic force microscopy (AFM). We showed that the titanium surface presenting click-immobilized OEG substantially suppressed the nonspecific attachment of protein and cells as compared to the unmodified titanium substrate. Furthermore, glycine-arginine-glycine-aspartate (GRGD), a cell adhesion peptide, was coimmobilized with OEG on the platform. We demonstrated that the resultant GRGD-presenting thin film on Ti substrates can promote the specific adhesion and spreading of AsPC-1 cells.  相似文献   
945.
The aim of this investigation is to obtain a polymer-based hybrid material with biodegradability, biocompatibility, and good mechanical properties and this object was realized via. in-situ introduction of the unmodified calcium carbonate (CaCO3) into a poly(l-lactic acid) (PLLA) matrix. As verified by the measurements from scanning electron microscopy (SEM), optical microscopy, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), the hybrid films which possesses a uniform dispersion of calcium carbonate CaCO3 in nano-meter scale, mechanically robustness and thermal stability could be fabricated by a mineralization-alike process. For example, the storage modulus increases from 441 MPa of neat PLLA to 1034 MPa of hybrid film containing 2% (w/w) CaCO3. In addition, the hybrid films display a significant improvement in its UV-exposure resistance.  相似文献   
946.
The composites, such as CFRP and GFRP, have been widely applied in spaceflight, for their low specific gravity, low cost, and additional structural stability. However, the high resistivity of the composites severely inhibits their further applications. Therefore, Cr/Al films with low resistivity and high adhesion were deposited on composites by cathodic arc technique. The films were characterized by pull test, Dektak 8 Stylus Profilometer, SEM, XPS, XRD and Z‐82 standard four probes. Results show that the aluminum film of fcc structure is compact and uniform, with resistivity as low as bulk Al. The adhesion between Cr buffer layer and composite substrate was greatly enhanced because of the formation of the chemical bonds, such as Cr? C, Cr? O and Cr? N, at the Cr/composite interface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
947.
A series of basic and acidic ionic liquids, 1-butyl-3-methylimidazolium hydroxide (BMIMOH), 1-acetyl-3-methylimidazolium chloride (AcMIMCl) and AcMIMCl-FeCl3, or analogues of AcMIMCl, namely 1-potassium acetate-3-methylimidazolium chloride (KAcMIMCl), 1-potassium (sodium, ammonium) acetate-3-methylimidazolium hydroxides (KAcMIMOH, NaAcMIMOH and NH4AcMIMOH), were prepared and used as catalysts for catalytic synthesis of propylene glycol ether via reaction of propylene oxide (PO) with methanol under mild reaction conditions. KAcMIMOH exhibited outstanding catalytic performance with 94.2% of conversion of PO and 99.1% of selectivity to 1-methoxy-2-propanol (MP-2) at 60°C and ambient pressure for 4 h. However, AcMIMCl-FeCl3 showed a good catalysis performance with high selectivity to 2-methoxy-1-propanol (MP-1). The tunable synthesis of MP-2 or MP-1 catalyzed by basic compound KAcMIMOH or acidic ionic liquid AcMIMCl-FeCl3 was realized.  相似文献   
948.
A highly enantioselective [4+2] cycloaddition reaction of β,γ-unsaturated α-keto esters with oxazolones was realized with readily available cinchona alkaloids as the catalysts. Using this reaction, a series of highly functionalized δ-lactones with adjacent α-quaternary-β-tertiary stereocenters were obtained in high yields (up to 97%) and with good-to-excellent enantioselectivities (up to 97% ee).  相似文献   
949.
The great performance of a fibrous bed bioreactor (FBB) is mainly dependent on the cell adhesion and immobilization into the fibrous matrix. Therefore, understanding the mechanism and factors controling cell adhesion in the fibrous matrix is necessary to optimize the FBB setup and further improve the fermentability. The adhesion behavior of a strain of Clostridium tyrobutyricum isolated from an FBB was studied, which was proven to be affected by the different environmental conditions, such as growth phase of cells, pH, ionic strength, ionic species, and composition of media. Our results also suggested that electrostatic interactions played an important role on bacteria adhesion into the fibrous matrix. This study demonstrated that the compositions of fermentation broth would have a significant effect on cell adhesion. Consequently, a two-stage glucose supply control strategy was developed to improve the performance of FBB with higher viable cell density in the operation of the FBB setup.  相似文献   
950.
Bromobenzoquinones (BBQs) represent a class of reactive metabolites of various aromatic contaminants with bromine-containing substituents, including bromobenzene, bromophenols, polybrominated diphenyl ethers (PBDEs). Recently, 2,6-dibromobenzoquinone also has been detected directly from drinking water. The alternation of the genome caused by covalent binding of chemicals or their metabolites to DNA provides a viable mechanism for carcinogenicity. In the present study, electrospray ionization coupled with ion trap mass spectrometry (ITMS), triple quadrupole MS or quadrupole time-of-flight MS was applied for the analysis of DNA adducts formed by BBQs. The study demonstrated 2-monobromobenzoquinone and 2,6-dibromobenzoquinone could covalently bind to deoxyguanosine (dG) and DNA in vitro. The chemical structures of the DNA adducts were confirmed by accurate mass values, collision-induced fragmentation tandem mass spectra as well as isotopic patterns. Generally, the reaction mechanism for the DNA adduction involved Michael addition between the electron-deficient carbon from the quinone and the nucleophilic exocyclic nitrogen from the dG followed by reductive cyclization with loss of a small molecule such as H(2)O, or HBrO. It was of particular interest to note that some adducts were generated from the reaction of one dG molecule with two BBQ molecules. The obtained results provided new information for assessing the potential cancer risk associated with bromobenzene, bromophenols, PBDEs and BBQs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号